
SPOWTT On-board Tool Documentation
This is the documentation for the SPOWTT On-board Tool.

The tool is mostly written in Python, with some minimal HTML+CSS+JS for the visualization of an
SVG graph.

Installation and configuration

Running the tool
Tool Description

Data-processing module
Server module
SVG Graph creation

Installation and configuration

Running the tool

The source code folder contains the data-processing module ‘dataprocessing.py’, the REST-like
server ‘server.py’, and the SVG graph builder ‘svg_maker.py’.

The scripts are invoked in the following way

python -O server.py python -O dataprocessing.py [/path/to/data/dir/] [Vertical acceleration field
name]

The python command flag ‘-O’ is reccomended when not launching for debug.

For more information regarding spawning these modules, refer to the documentation of each
individual module: server.run_server() and dataprocessing.start_observer()

This is the directory that will be Monitored for new datafiles.

The following customization endpoints are available:

Data-processing

Command line parameter Monitored directory

Command line parameter Vertical acceleration field name

The name of the field containing the timeseries for the z-axis acceelrations in the
MDF datafile.

dataprocessing.ACTION_ON_FILES_FOUND_UPON_STARTUP

dataprocessing.MSI_CALC__FORECAST_TIME_INTERVAL

dataprocessing.ACTION_ON_FILES_FOUND_UPON_STARTUP

dataprocessing.SERVER_ENDPOINT_URL

dataprocessing.LOG_DIR

dataprocessing.LOGFILENAME

Font (size, weight, color) for: title, axis label, tickmarks, bottom value, side value
Tickmarks: linear / logarithmic
Plot size
Gradient colors

Tool Description

Data-processing module

The purpose of the dataprocessing module is to monitor a given directory for datafiles produced by the
data aqusition system, consume them for calculations as they are produced, log and send the result to
the visualization process.

This issue and the employed solution are discussed below

Perform some sanity checks on the file Append the signalset to life-long
buffer: MDF_Monitor.data_buffer

Compute the new MSI and MSI-forecast (1 hour) based on the new data

Server

svg_maker.graph()

The following steps follow the disovery of a new datafile:

Wait datafile to be done being written to

Read the datafile

Recalculate values

Save and display values

The values are logged to a file, at path dataprocessing.LOG_DIR and are sent to the server to
be displayed on the plot.

The data aquisition suite is currently set to write measurements to files in chunks of 30 seconds; the
file format of these is the MicroLab’s MDF format. This format uses two separate files for the header
and the datafile, as there may be multiple datafiles associated with one header file. The header is a
binary file with extension ‘.mdf’, and carries a representation of the structure of an entry (a row) in the
datafile, with extension ‘.dta’, as well as metadata about each time trace.

The files are also created at the start of the timetrace they will contain. This means that, to ensure that
we are not trying to read a file that is being written to, we need to wait for the next file to appear in the
directory. File events will then point to the file containing the time trace immediately following the one
in the file that just appeared.

When a new file event arrives, its data are read and if valid it is appended to a pymarin.TimeSignalSet .

The set now also contains the more recent data, out of which we need the timebase and the vertical
acceleration components to calculate the sickness index.

The sickness index is calculated using the following function found in PyMARIN. It takes the FFT
(windowed if dom param is positive) of the acceleration data It should be noted that this function
requires vertical acceleration without the gravitational component.

This function computes the ISO-MSI based on a time trace of the vertical acceleration.

It is based on the pymarin.analysis.freqdom.calc_msi_iso() funciton.

Requires the analyse_toolbox.

time (numpy.ndarray) – array of size N [s]
zacc (numpy.array) – 1D array of size N [m/s2]
T0 (float) – loat to specify time duration of MSI in [s]
km (float) – vomiting ratio factor.
dom (float) – if dom is positive, then a wosa spectrum is computed based on dom if dom is
negative, then a fft spectrum is computed. This is the prefered method.

mmsi

pymarin.analysis.timedom.compute_msi_iso(time, zacc, T0=3600, km=0.3333333333333333, dom=-1)

Parameters

Returns

float

The amount of time to forecast the MSI for

This global variable lets you choose what to do with files found in directory at script launch. It can
be set to one of the following three
functions: _process_old_files() , _delete_old_files() , _ignore_old_files() .

This point to the server.py instance. In this case it is simply ‘localhost’

The directory where values are logged as they are produced.

The log format is one file per day, with file name ‘MSI_YYYYMMDD.log’

This class is used to generate events upon creation of MDF datafiles to feed the data to the MSI
calculation.

vertical_acceleration_field_name (str) – The name of the data field containing the
vertical accelerations
callback ((float,float) -> None()) – The callable invoked when new values for MSI/MSIf
are calculated

Kick-off the folder watcher process

path (str) – Path to the directory to monitor for data files

Return type

dataprocessing.MSI_CALC__FORECAST_TIME_INTERVAL= 3600

dataprocessing.ACTION_ON_FILES_FOUND_UPON_STARTUP= <function _delete_old_files>

dataprocessing.SERVER_ENDPOINT_URL= 'http://127.0.0.1'

dataprocessing.LOG_DIR= WindowsPath('D:/Data/Logs')

dataprocessing.LOGFILENAME= 'MSI_20200312.log'

class dataprocessing.MDF_Monitor(vertical_acceleration_field_name: str, callback: Callable[[float,
float], None])

Parameters

dataprocessing.start_observer(path: str, accfield: str, callback: Callable[[float, float], None] =
<function _send_MSI>) → watchdog.observers.read_directory_changes.WindowsApiObserver

Parameters

callback (Callable[[float, float], None]) – The callable to be invoked when new results are
available. Useful for unit tests.

Server module

The purpose of the server module is to host the visualization interface.

This server hosts the static assets related to the webpage. These include:

The main page body (skeleton)

The main style sheet

The main page script and the dark mode toggling script

favicon.ico and many others in /img/

The favicon looks like tihs:

Webs
i

The server also acts as a REST endpoint at http://localhost/rest/. This is used to hold the values
of MSI and MSIf, which are the current value for the Motion Sickness Index and the predicted value in
one hour. These values are updated by the dataprocessing module via a PUT request, which are then
displayed on the plot.

Clients that want to view the plot can do so by requesting http://localhost/ or http://localhost/index.html.
This page will only be served once, and in itself it does not contain the plot.

There is also a mechanism to ensure that the graph is updated sa soon as a new value is pushed to
the server. This is a combination of long-polling and ETag’s.

index.html

style.css

SPOWTT.js, darkmode.js

Various assets related to the site icon

http://localhost/rest/
http://localhost/
http://localhost/index.html

The plot is loaded by the JavaScript (AJAX), which will request it from the server. The server will only
construct and send another plot if the version being displayed is too old. This is accomplished by
using the If-None-Match field in the HTTP request and the ETagfield of an HTTP response. These
field contain value in a special format, namely the string made of the two values (MSI, MSIF)
concatenated by a comma with no space (e.g. “1.23,4.56”). As per the HTTP specification,
the ETag string must be enclosed in double quotation marks, which means the ETag field string value
will start and end with a ” symbol.

Bases: dict

Run the server listener (block until stop() is called)

Stop the server

Bases: tornado.web.RequestHandler

Bases: tornado.web.StaticFileHandler

For subclass to add extra headers to the response

Bases: tornado.web.RequestHandler

Set reference to parent object

class server.SpowttVizServer

async wait_for_change(timeout_seconds: int = 20) → Awaitable[bool]

run(port: int = 80)

async stop()

class server.MainPageHandler(application: tornado.web.Application, request:
tornado.httputil.HTTPServerRequest, **kwargs: Any)

get()

class server.MyStaticFileHandler(application: tornado.web.Application, request:
tornado.httputil.HTTPServerRequest, **kwargs: Any)

set_extra_headers(path)

class server.ReST_Endpoint(application: tornado.web.Application, request:
tornado.httputil.HTTPServerRequest, **kwargs: Any)

initialize(*, parent: server.SpowttVizServer)

Add headers to discourage the browser from caching

Conclude the request with a supplied code (and body, if default argument None is overridden)

Check whether the existance of the key is as the request expected

REST GET

REST PUT

REST POST

REST PATCH

REST DELETE

Bases: tornado.web.RequestHandler

The request handler for the SVG chart

Set reference to parent object

Computes the etag header to be used for this request.

By default uses a hash of the content written so far.

set_extra_headers(key)

finish_with_code(code: int, body=None)

check(key, *, exists: bool)

async get(key)

put(key)

post(key)

patch(key)

delete(key)

class server.MsiGraphHandler(application: tornado.web.Application, request:
tornado.httputil.HTTPServerRequest, **kwargs: Any)

initialize(*, parent: server.SpowttVizServer)

compute_etag()

May be overridden to provide custom etag implementations, or may return None to disable
tornado’s default etag support.

Conclude the request with a 304 (Not modified)

Conclude the request with a 200 and plot in body

This method handles requests for the plot.

If the ETag is present and outdated, the plot is served. If the onchange query parameter is
present, the server will delay the reponse until a value in the REST server is changed.

When the ETag matches, or when the onchange wait times out without a value having been
changed, a 304 (Not modified) is issued.

Otherwise, the plot is served.

Run the server until user iterrupt (Ctrl-C)

SVG Graph creation

This function composes the SVG plot based on the two values supplied. The main value is
represented as a vertical bar, while the side value is represented by an arrow shape.

main_value (float) – The value to display in the plot
side_value (float) – The value to display on the side of the plot
title (str) – The title at the top of the plot

finish_with_NOT_MODIFIED()

finish_with_plot()

async get()

server.run_server()

svg_maker.graph(main_value: float, side_value: float, *, title: str, y_label: str, arrow_label: str, width: int
= 600, height: int = 1000, margin_side: int = 100, margin_top: int = 100, plot_style_css: str =
'<style>\nsvg text.title {\n font-size : 46px;\n font-weight: 600;\n}\nsvg text.axislabel {\n font-size :
32px;\n font-weight: 500;\n}\nsvg text.valuelabel {\n font-size : 30px;\n font-weight: 600;\n}\nsvg
text.arrowlabel {\n font-size : 22px;\n font-weight: 200;\n}\nsvg text.tickval {\n font-size : 24px;\n font-
weight: 500;\n text-anchor: end;\n}\n</style>', tickmarks: List[int] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
100])

Parameters

y_label (str) – The y-axis label
arrow_label (str) – The label underneath the arrow (side_value)
width (int) – The width of the SVG
height (int) – The height of the SVG
margin_side (int) – The margin for the plot from the sides
margin_top (int) – The margin for the plot from the top
fontsize_title (int) – The font size for the title
fontsize_axislabel (int) – The font size for the axis label
fontsize_valuelabel (int) – The font size for the main value label
fontsize_arrowlabel (int) – The font size for the side value label
fontsize_tickmarks (int) – The font size for the tickmarks values

