Robotics & Autonomous Systems

Find out more about our robotics and autonomous systems testing and validation facilities.

Find out more

Electrical Infrastructure Research Hub

The Catapult has appointed the University of Strathclyde and the University of Manchester to form the Electrical Infrastructure Research Hub.

Find out more

Automation & Engineering Solutions

Find out more about our work in robotics, autonomous systems and artificial intelligence.

Find out more

Stay Current

Dig deeper into the biggest issues facing offshore wind, wave and tidal energy with our series of Analysis & Insight papers.

Find out more

Live Innovation Opportunities

There are a number of programmes identifying the key technology innovation challenges faced by the offshore renewables industry. Solving these challenges will help drive down the cost of offshore renewable energy, with positive effects for the industry and UK economy. Visit our Live Innovation Opportunities page to find out if your technology has the answer.

Find out more

Catapult gives CLOWT to its Levenmouth turbine

The Offshore Renewable Energy (ORE) Catapult is creating a digital ‘Clone of the Levenmouth Turbine’ (CLOWT), which will use sensor instrumentation to advance the industry’s understanding of how large megawatt turbines behave, and identify cost reduction opportunities through design optimisation.

The £450k project, with £215k funding support from the Scottish Government, will enable the Catapult to instrument its Levenmouth Offshore Wind Demonstration Turbine’s blades, tower and substructure, to monitor its behaviour in real-world conditions. It will then use the outputs to validate the current design methodologies and tools available for building large-scale offshore wind turbines, reducing design inefficiencies and flaws.

Validated design modelling will benefit the industry’s researchers and supply chain, as design optimisation and the ability to develop advanced simulations can support a significant number of leading Scottish engineering and manufacturing companies. It also offers opportunities to SMEs who can provide the sensors needed to instrument the turbine.

One of the first potential outputs from the project is expected to be the ‘Experimental Verification of Aeroelastic Models’ in collaboration with the University of Strathclyde, which will verify the accuracy of existing industry design tools, reducing the modelling uncertainty associated with these simulations.

Cian Conroy, ORE Catapult’s Sector Lead, Wind, said:

“With the rapid scale in growth of offshore wind turbines, with 8MW machines now being readily deployed and the industry looking to develop 10MW turbines, industry needs to rethink and revalidate assumptions associated with offshore wind turbine designs.

“Deploying sensors on the Levenmouth turbine gives us a unique opportunity to understand the behaviour of a large turbine in real-world conditions, and benefit the industry, its supply chain and academia. Having a validated model is crucial for understanding the impact of design decisions in the weight and cost of different components of the turbine”.

The University of Strathclyde’s Professor Bill Leithead, Chair of Supergen Wind, said:

“Instrumentation of the turbine has the potential to support a number of vital research projects for the offshore wind industry, and position the UK academic research community at the heart of European wind research. This project will enable unique research opportunities to explore the interactions between the turbine and its environment, and also the impact this has on elements such as the tower, foundations and blades, allowing turbine design to be streamlined and improved.”

Ben Wysome, Head of Department for Ramboll’s Offshore Wind team in the UK commented on the engineering consultancy’s involvement in this project:

“Ramboll is in discussions with ORE Catapult on providing expertise on structural health monitoring gathered in latest offshore wind projects. We are convinced that monitoring offshore wind turbines, delivered in structured and standardised way, will make offshore structures safer, allow operators to optimise inspections, and provide reliable data on the remaining useful lifetime of foundations, all of which will contribute to further reducing the cost of energy from offshore wind.”

Back to Press Releases

Thu 28 Jul 2016
Last Updated
Tue 23 Jan 2018


Related Articles

Cookies under debug

Cookies on Catapult explained

To comply with EU directives we now provide detailed information about the cookies we use. To find out more about cookies on this site, what they do and how to remove them, see our information about cookies. Click OK to continue using this site.